
COP 4710: Database Systems (Transaction Processing) Page 1 Mark Llewellyn
©

COP 4710: Database Systems
Spring 2006

CHAPTER 16 – Transaction Processing – Part 1

COP 4710: Database Systems
Spring 2006

CHAPTER 16 – Transaction Processing – Part 1

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: Database Systems (Transaction Processing) Page 2 Mark Llewellyn
©

The States of a Transaction (cont.)

active

begin_transaction

partially
committed

failed

committed

terminated

end_transaction

read/write

abort

abort

commit

COP 4710: Database Systems (Transaction Processing) Page 3 Mark Llewellyn
©

Introduction to Transaction Processing

• The execution of any “program” that either accesses (queries) or
changes the database contents is called a transaction.

• Serial transactions – two or more transactions are processed in serial
fashion with one transaction starting and completing before the next
transaction begins execution. At no time, is more than one
transaction processing or making progress.

• Interleaved transactions – two or more transactions are processed
concurrently with only one transaction at a time actually making
progress. This most often occurs on a single multi-programmed CPU.

• Simultaneous transactions – two or more transactions are processed
concurrently with any number progressing at one time. This is a
multiple CPU situation.

COP 4710: Database Systems (Transaction Processing) Page 4 Mark Llewellyn
©

Introduction to Transaction Processing (cont.)

t0 t1 t2 t3

T3 T1 T2 time

Serial transactions (unknown number of CPUs)

COP 4710: Database Systems (Transaction Processing) Page 5 Mark Llewellyn
©

Introduction to Transaction Processing (cont.)

t0 t2 t4 t6

T3 T1 T2 time

Interleaved transactions (single CPU)

t1 t5t3

T3 T2 T1

COP 4710: Database Systems (Transaction Processing) Page 6 Mark Llewellyn
©

Introduction to Transaction Processing (cont.)

t0 t1

T1

time

Simultaneous transactions (3 CPUs shown)

T3

T2

COP 4710: Database Systems (Transaction Processing) Page 7 Mark Llewellyn
©

Introduction to Transaction Processing (cont.)

• When viewed at the transaction level, any transaction has the
potential to access the database in two ways:

– read(item): reads the value of some database item.

– write(item): write the value of an item into the database.

• These are not atomic operations.

• To read an item the following must occur:
– find the address of the disk block that contains the item.
– copy the disk block into buffer (if not already present).
– copy the item from the buffer into the “program”.

COP 4710: Database Systems (Transaction Processing) Page 8 Mark Llewellyn
©

Introduction to Transaction Processing (cont.)

• To write an item the following must occur:
– find the address of the disk block that contains the item.
– copy the disk block into buffer (if not already present).
– copy the item from the buffer into the “program”.
– store the updated block from the buffer back onto the disk (at some point

in time, usually not immediately).

• When to write back is typically up to the recovery system of
the database and may involve OS control.

• Too early of a write back may cause unnecessary data
transfers.

• Too late of a write back may cause unnecessary blocking.

COP 4710: Database Systems (Transaction Processing) Page 9 Mark Llewellyn
©

Concurrency Control
• Given a consistent (correct?) state of the database as input an

individually correct transaction will produce a correct state of
the database as output, if that transaction is executed in
isolation.

• The goal of concurrency control is to allow multiple
transactions to be processing simultaneously within a certain
time period with all of the concurrent transactions producing
a correct state of the database at then end of their concurrent
execution.

COP 4710: Database Systems (Transaction Processing) Page 10 Mark Llewellyn
©

Concurrency Control – Why Its Needed
• There are many different types of conflicts that can occur between

concurrently executing processes if concurrency control is not enforced.

Lost Update Problem

• Suppose two distinct transactions T1 and T2 are processing in the
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T2 performs read(n) T2 will read a value of n = 5

t2 T1 performs write(n-1) T1 will write value of n = 4

t3 T2 performs write(n-1) T2 will also write value of n = 4!

• Problem: The update performed by T1 at time t2 is “lost” since the update
written by T2 at time t3 overwrites the previous value.

COP 4710: Database Systems (Transaction Processing) Page 11 Mark Llewellyn
©

Handling the Lost Update Problem
• There are several different ways in which the lost update

problem can be handled.

1. Prevent T2 from reading the value of n at time t1 on the grounds that T1 has
already read the value of n and may therefore update the value.

2. Prevent T1 from writing the value of n-1 at time t2 on the grounds that T2
has also read the same value of n and would therefore be executing on an
obsolete value of n, since T2 cannot re-read n.

3. Prevent T2 from writing the value of n-1 at time t3 on the grounds that T1
has already updated the value of n and since T1 preceded T2, then T2 is using
an obsolete value of n.

• The first two of these techniques can be implemented using locking
protocols, while the third technique can be implemented with time-
stamping. We’ll see both of these techniques later.

COP 4710: Database Systems (Transaction Processing) Page 12 Mark Llewellyn
©

The Dirty Read Problem
Dirty Read Problem

• Suppose two distinct transactions T1 and T2 are processing in the
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T1 performs write(n-1) T1 writes a value of n = 4

t2 T2 performs read(n) T2 will read value of n = 4

t3 T1 aborts T2 is executing with a “bad” value of n

• Problem: T2 is operating with a value that was written by a transaction that
aborted prior to the completion of T2. When T1 aborts all of its updates must be
undone, which means that T2 is executing with a bad value of n and therefore
cannot leave the database in a consistent state.

Solution: T2 must also be aborted.

COP 4710: Database Systems (Transaction Processing) Page 13 Mark Llewellyn
©

The Unrepeatable Read Problem
Unrepeatable Read Problem

• Suppose two distinct transactions T1 and T2 are processing in the
concurrent order shown below accessing a common value n.

time action comment

t0 T1 performs read(n) suppose T1 reads value of n = 5

t1 T1 performs read(n) T1 reads a value of n = 5

t2 T2 performs write(n-1) T2 will write value of n = 4

t3 T1 performs read(n) T1 reads a different value of n this time

• Problem: When T1 performs its second read of n, the value is not the same as its
first read of n. T1 cannot repeat its read.

Solution: This problem is typically handled with locking which is rather inflexible, but
can also be solved with time-stamping.

COP 4710: Database Systems (Transaction Processing) Page 14 Mark Llewellyn
©

The Transaction Recovery System
• Whenever a transaction is submitted to the DBMS for

execution, the DBMS is responsible for making sure that
either:

1 All operations of the transaction are completed successfully and their
effect is permanently recorded in the database, or

2 The transaction has no effect whatsoever on the the database or any
other transaction.

• If a transaction fails after executing some of its operations,
problems will occur with consistency in the database.
Therefore, if a transaction fails after its is initiated but prior
to its commitment, all of the effects of that transaction must
be undone from the database.

COP 4710: Database Systems (Transaction Processing) Page 15 Mark Llewellyn
©

The Transaction Recovery System (cont.)

• Types of failures for a transaction:

– System crash – some type of hardware or system failure occurs.

– Transaction error – integer overflow, division by zero, operator
intervention.

– Local errors or exception conditions – required data is not available.

– Concurrency control enforcement – serializability is violated,
deadlock detection victim selection, etc.

– Disk errors – error correction/detection.

– Physical problems – fire, power failure, operator error, etc.

COP 4710: Database Systems (Transaction Processing) Page 16 Mark Llewellyn
©

The States of a Transaction
• A transaction can be in one of several different states:

– begin_transaction: marks the beginning of the transaction.

– read/write: specifies the various db operations performed by the
transaction.

– end_transaction: specifies that all read/write operations have ended
and the transaction is ready to terminate. Note: this does not actually
end the transactions time in the system – now it heads to the
concurrency control system for verification.

– commit: marks the successful end of the transaction – its effects are
now permanent (committed) in the database and cannot be undone.

– abort (rollback): marks the unsuccessful end of the transaction. All
changes and effects in the database must be undone and/or other
transactions must be aborted. No changes are committed for the
transaction.

COP 4710: Database Systems (Transaction Processing) Page 17 Mark Llewellyn
©

The States of a Transaction (cont.)

active

begin_transaction

partially
committed

failed

committed

terminated

end_transaction

read/write

abort

abort

commit

COP 4710: Database Systems (Transaction Processing) Page 18 Mark Llewellyn
©

System Log
• The system log keeps track of all transaction operations that

affect values of database items.

• The information in the log is used to perform recovery
operations from transaction failures.

• Most logs consist of several levels ranging from the log
maintained in main memory to archival versions on backup
storage devices.

• Upon entering the system, each transaction is given a unique
transaction identifier (timestamps are common).

COP 4710: Database Systems (Transaction Processing) Page 19 Mark Llewellyn
©

System Log (cont.)

• In the system log, several different types of entries occur
depending on the action of the transaction:

– [start, T]: begin transaction T.

– [write, T, X, old, new]: transaction T performs a write on object X,
both old and new values of X are recorded in the log entry.

– [read, T, X]: transaction T performs a read on object X.

– [commit, T]: transaction T has successfully completed and indicates
that its changes can be made permanent.

– [abort, T]: transaction T has aborted.

• Some types of recovery protocols do not require read
operations be logged.

COP 4710: Database Systems (Transaction Processing) Page 20 Mark Llewellyn
©

Commit Point
• A transaction T reaches its commit point when all of its

operations that access the database have successfully
completed and the effect of all of these operations have been
recorded in the log.

• Beyond the commit point, a transaction is said to be
committed and its effect on the database is assumed to be
permanent. It is at this point that [commit, T] is entered into
the system log.

• If a failure occurs, a search backward through the log (in
terms of time) is made for all transactions that have written a
[start, T] into the log but have not yet written [commit, T]
into the log. This set of transactions must be rolled back.

COP 4710: Database Systems (Transaction Processing) Page 21 Mark Llewellyn
©

ACID Properties of Transactions
• Atomcity – a transaction is an atomic unit of processing; it is

either performed in its entirety or not at all.

• Consistency – a correct execution of the transaction must
take the database from one consistent state to
another.

• Isolation – a transaction should not make its updates visible
to other transactions until it is committed. Strict
enforcement of this property solves the dirty read
problem and prevents cascading rollbacks from
occurring.

• Durability – once a transaction changes the database and
those changes are committed, the changes
must never be lost because of a failure.

COP 4710: Database Systems (Transaction Processing) Page 22 Mark Llewellyn
©

Schedules and Recoverability
• When transactions are executing concurrently in an

interleaved fashion, the order of execution of the operations
from the various transactions forms what is known as a
transaction schedule (sometimes called a history).

A schedule S of n transactions T1, T2, T3, ..., Tn is an
ordering of the operations of the transactions where for
each transaction Ti ∈ S, each operation in Ti occurs in
the same order in both Ti and S.

COP 4710: Database Systems (Transaction Processing) Page 23 Mark Llewellyn
©

Schedules and Recoverability (cont.)

• The notation used for depicting schedules is:

– ri(x) means that transaction i performs a read of object x.

– wi(x) means that transaction i performs a write of object x.

– ci means that transaction i commits.

– ai means that transaction i aborts.

• An example schedule: SA = (r1(x), r2(x), w1(x), w2(x), c1, c2)

• This example schedule represents the lost update problem.

• Another example:

SB = (r1(x), r1(y), w1(y), r2(x), w1(x), w2(y), c2, c1)

COP 4710: Database Systems (Transaction Processing) Page 24 Mark Llewellyn
©

Conflict in a Schedule

• Two operations in a schedule are said to conflict if they
belong to different transactions, access the same item, and
one of the operations is a write operation.

• Consider the following schedule:

SA = (r1(x), r2(x), w1(x), c1, c2)

r2(x) and w1(x) conflict

r1(x) and r2(x) do not conflict.

COP 4710: Database Systems (Transaction Processing) Page 25 Mark Llewellyn
©

Recoverability
• For some schedules it is easy to recover from transaction

failures, while for others it can be quite difficult and
involved.

• Recoverability from failures depends in large part on the
scheduling protocols used. A protocol which never rolls
back a transaction once it is committed is said to be a
recoverable schedule.

• Within a schedule a transaction T is said to have read from a
transaction T* if in the schedule some item X is first written
by T* and subsequently read by T.

COP 4710: Database Systems (Transaction Processing) Page 26 Mark Llewellyn
©

Recoverability (cont.)

• A schedule S is a recoverable schedule if no transaction T in S commits
until all transactions T* that have written an item which T reads have
committed.

– For each pair of transactions Tx and Ty, if Ty reads an item previously written
by Tx, then Tx must commit before Ty.

Example: SA = (r1(x), r2(x), w1(x), r1(y), w2(x), c2, w1(y), c1)

This is a recoverable schedule since, T2 does not read any item written by T1 and
T1 does not read any item written by T2.

Example: SB = (r1(x), w1(x), r2(x), r1(y), w2(x), c2, a1)

This is not a recoverable schedule since T2 reads value of x written by T1
and T2 commits before T1 aborts. Since T1 aborts, the value of x written
by T2 must be invalid so T2 which has committed must be rolled back
rendering schedule SB not recoverable.

COP 4710: Database Systems (Transaction Processing) Page 27 Mark Llewellyn
©

Cascading Rollback
• Cascading rollback occurs when an uncommitted transaction

must be rolled back due to its read of an item written by a
transaction that has failed.

Example: SA = (r1(x), w1(x), r2(x), r1(y), r3(x), w2(x), w1(y), a1)

In SA, T3 must be rolled back since T3 read value of x produced by T1 and
T1 subsequently failed. T2 must also be rolled back since T2 read value of
x produced by T1 and T1 subsequently failed.

Example: SB = (r1(x), w1(x), r2(x), w2(x), r3(x), w1(y), a1)

In SB, T2 must be rolled back since T2 read value of x produced by T1 and
T1 subsequently failed. T3 must also be rolled back since T3 read value of
x produced by T2 and T2 subsequently failed. T3 is rolled back, not
because of the failure of T1 but because of the failure of T2.

COP 4710: Database Systems (Transaction Processing) Page 28 Mark Llewellyn
©

Cascading Rollback (cont.)

• Cascading rollback can be avoided in a schedule if every
transaction in the schedule only reads items that were written
by committed transactions.

• A strict schedule is a schedule in which no transaction can
read or write an item x until the last transaction that wrote x
has committed (or aborted).

– Example: SA = (r1(x), w1(x), c1, r2(x), c2)

COP 4710: Database Systems (Transaction Processing) Page 29 Mark Llewellyn
©

Serializability
• Given two transactions T1 and T2, if no interleaving of the

transactions is allowed (they are executed in isolation), then
there are only two ways of ordering the operations of the two
transactions.

Either: (1) T1 executes followed by T2

or (2) T2 executes followed by T1

• Interleaving of the operations of the transactions allows for
many possible orders in which the operations can be
performed.

COP 4710: Database Systems (Transaction Processing) Page 30 Mark Llewellyn
©

Serializability (cont.)

• Serializability theory determines which schedules are correct
and which are not and develops techniques which allow for
only correct schedules to be executed.

• Interleaved execution, regardless of what order is selected,
must have the same effect of some serial ordering of the
transactions in a schedule.

• A serial schedule is one in which every transaction T that
participates in the schedule, all of the operations of T are
executed consecutively in the schedule, otherwise the
schedule is non-serial.

COP 4710: Database Systems (Transaction Processing) Page 31 Mark Llewellyn
©

Serializability (cont.)

• A concurrent (or interleaved) schedule of n transactions is serializable if
it is equivalent (produces the same result) to some serial schedule of the
same n transactions.

• A schedule of n transactions will have n! serial schedules and many more
non-serial schedules.

• Example: Transactions T1, T2, and T3 have the following serial
schedules: (T1, T2, T3), (T1, T3, T2), (T2, T1, T3), (T2, T3, T1), (T3,
T1, T2), and (T3, T2, T1).

• There are two disjoint sets of non-serializable schedules:

– Serializable: those non-serial schedules which are equivalent to one or more
of the serial schedules.

– Non-serializable: those non-serial schedules which are not equivalent to any
serial schedule.

COP 4710: Database Systems (Transaction Processing) Page 32 Mark Llewellyn
©

Serializability (cont.)

• There are two main types of serializable schedules:

– Conflict serializable: In general this is an O(n3) problem where n
represents the number of vertices in a graph representing distinct
transactions.

– View serializable: This is an NP-C problem, meaning that the only
known algorithms to solve it are exponential in the number of
transactions in the schedule.

• We’ll look only a conflict serializable schedules.

• Recall that two operations in a schedule conflict if (1) they
belong to different transactions, (2) they access the same
database item, and (3) one of the operations is a write.

COP 4710: Database Systems (Transaction Processing) Page 33 Mark Llewellyn
©

Conflict Serializability
• If the two conflicting operations are applied in different

orders in two different schedules, the effect of the schedules
can be different on either the transaction or the database, and
thus, the two schedules are not conflict equivalent.

– Example: SA = (r1(x), w2(x))

SB = (w2(x), r1(x))

The value of x read in SA may be different than in SB.

– Example: SA = (w1(x), w2(x), r3(x))

SB = (w2(x), w1(x), r3(x))

The value of x read by T3 may be different in SA than in SB

COP 4710: Database Systems (Transaction Processing) Page 34 Mark Llewellyn
©

Conflict Serializability (cont.)

• To generate a conflict serializable schedule equivalent to
some serial schedule using the notion of conflict equivalence
involves the reordering of non-conflicting operations of the
schedule until an equivalent serial schedule is produced.

• The technique is this: build a precedence graph based upon
the concurrent schedule. Use a cycle detection algorithm on
the graph. If a cycle exists, S is not conflict serializable. If
no cycle exists, a topological sort of the graph will yield an
equivalent serial schedule.

COP 4710: Database Systems (Transaction Processing) Page 35 Mark Llewellyn
©

Algorithm Conflict_Serializable
Algorithm Conflict_Serializable

//input: a concurrent schedule S

//output: no – if S is not conflict serializable, a serial schedule S* equivalent to S otherwise.

Conflict_Serializable(S)

1. for each transaction TX ∈ S, create a node (in the graph) labeled TX.

2. for each case in S where TY executes read(a) after TX executes write(a) create the edge
TX → TY. The meaning of this edge is that TX must precede TY in any serially equivalent
schedule.

3. for each case in S where TY executes write(a) after TX executes read(a) create the edge
TX → TY. The meaning of this edge is that TX must precede TY in any serially equivalent
schedule.

4. for each case in S where TY executes write(a) after TX executes write(a) create the edge
TX → TY. The meaning of this edge is that TX must precede TY in any serially equivalent
schedule.

5. if the graph contains a cycle then return no, otherwise topologically sort the graph and
return a serial schedule S* which is equivalent to the concurrent schedule S.

COP 4710: Database Systems (Transaction Processing) Page 36 Mark Llewellyn
©

Conflict Serializability – Example #1
Let SC = (r1(a), w1(a), r2(a), w2(a), r1(b), w1(b), r2(b), w2(b))

T1 T2

w1(a) precedes r2(a)

r1(a) precedes w2(a)

Graph contains a cycle, so SC is not conflict serializable

COP 4710: Database Systems (Transaction Processing) Page 37 Mark Llewellyn
©

Conflict Serializability – Example #2
Let SC = (r3(y), r3(z), r1(x), w1(x), w3(y), w3(z), r2(z), r1(y), w1(y),

r2(y), w2(y), r2(y), w2(y))

Graph contains no cycles, so a serially equivalent schedule would be T3, T1, T2.

T1 T2

T3

edge reason

1 w3(y) precedes r2(y)

2 w1(x) precedes r2(x)

3 w3(z) precedes r2(z)

4 w1(y) precedes r2(y)

5 r3(y) precedes w1(y)

6 r1(x) precedes w2(x)

7 r1(y) precedes w2(y)

2, 4, 6, 7

1, 35

COP 4710: Database Systems (Transaction Processing) Page 38 Mark Llewellyn
©

Concurrency Control Techniques

• There are several different techniques that can be employed
to handle concurrent transactions.

• The basic techniques fall into one of four categories:

1. Locking protocols

2. Timestamping protocols

3. Multiversion protocols – deal with multiple versions of the same data

4. Optimistic protocols – validation and certification techniques

COP 4710: Database Systems (Transaction Processing) Page 39 Mark Llewellyn
©

Locking Protocols
• Transactions “request” locks and “release” locks on database

objects through a system component called a lock manager.

• Main issues in locking are:

– What type of locks are to be maintained.

– Lock granularity: runs from very coarse to very fine.

– Locking protocol

– Deadlock, livelock, starvation

– Other issues such as serializability

LOCK
MANAGER

process
request

grant

deny

issue lock – transaction continues

abort

block in queue

COP 4710: Database Systems (Transaction Processing) Page 40 Mark Llewellyn
©

Locking Protocols (cont.)

• Locking protocols are quite varied in their degree of
complexity and sophistication, ranging from very simple yet
highly restrictive protocols, to quite complex protocols which
nearly rival time-stamping protocols in their flexibility for
allowing concurrent execution.

• In order to give you a flavor of how locking protocols work,
we’ll focus on only the most simple locking protocols.

• While the basic techniques of all locking protocols are the
same, in general, the more complex the locking protocol the
higher the degree of concurrent execution that will be
permitted under the protocol.

COP 4710: Database Systems (Transaction Processing) Page 41 Mark Llewellyn
©

Locking Granularity
• When devising a locking protocol, one of the first things that must

be considered is the level of locking that will be supported by the
protocol.

• Simple protocols will support only a single level of locking while
more sophisticated protocols can support several different levels of
locking.

• The locking level (also called the locking granularity), defines the
type of database object on which a lock can be obtained.

• The coarsest level of locking is at the database level, a transaction
basically locks the entire database while it is executing.
Serializability is ensured because with the entire database locked,
only one transaction can be executing at a time, which ensures a
serial schedule of the transactions.

COP 4710: Database Systems (Transaction Processing) Page 42 Mark Llewellyn
©

Locking Granularity (cont.)

• Moving toward a finer locking level, typically the next level of locking
that is available is at the relation (table) level. In this case, a lock is
obtained on each relation that is required by a transaction to complete its
task.

– If we have two transactions which need different relations to accomplish their
tasks, then they can execute concurrently by obtaining locks on their
respective relations without interfering with one another. Thus, the finer
grain lock has the potential to enhance the level of concurrency in the system.

• The next level of locking is usually at the tuple level. In this case several
transactions can be executing on the same relation simultaneously,
provided that they do not need the same tuples to perform their tasks.

• At the extreme fine end of the locking granularity would be locks at the
attribute level. This would allow multiple transactions to be
simultaneously executing in the same relation in the same tuple, as long
as they didn’t need the same attribute from the same tuple at the same
time. At this level of locking the highest degree of concurrency will be
achieved.

COP 4710: Database Systems (Transaction Processing) Page 43 Mark Llewellyn
©

Locking Granularity (cont.)

• There is, unfortunately a trade-off between enhancing the level of
concurrency in the system and the ability to manage the locks.

– At the coarse end of the scale we need to manage only a single lock,
which is easy to do, but this also gives us the least degree of
concurrency.

– At the extremely fine end of the scale we would need to manage an
extremely large number of locks in order to achieve the highest
degree of concurrency in the system.

• Unfortunately, with VLDB (Very Large Data Bases) the number
of locks that would need to be managed at the attribute level poses
too complex of a problem to handle efficiently and locking at this
level almost never occurs.

COP 4710: Database Systems (Transaction Processing) Page 44 Mark Llewellyn
©

Locking Granularity (cont.)

– For example, consider a fairly small database consisting of 10
relations each with 10 attributes and suppose that each relation has
1000 tuples. This database would require the management of 10 × 10
× 1000 = 100,000 locks. A large database with 50 relations each
having 25 attributes and assuming that each relation contained on the
order of a 100,000 tuples; the number of locks that need to be
managed grows to 1.25×108 (125 million locks).

• A VLDB with hundreds of relations and hundreds of attributes and
potentially millions of tuples can easily require billions of locks to
be maintained if the locking level is at the attribute level.

• Due to the potentially overwhelming number of locks that would
need to be maintained at this level, a compromise to the tuple level
of locking is often utilized.

